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ABSTRACT

In order to implement an EEG-based brain computer interface (BCI), a very large number of strategies
(ranging from sensory-motor, p300, auditory based, visually based) can be used. However, no technique
exists which is based on the olfactory stimulation or, better, based on the imagination of olfactory
stimuli.

The present paper describes an innovative paradigm, that is the voluntary brain activation with the
disgust produced by remembering unpleasant odors, and a simple and robust classification method on
which a single trial binary BCI can be implemented. In order to classify the signal, mainly the channels
P4, C4, T8 and P8 have been used, by spanning the frequency band between 32 and 42 Hz, that is a
subset of the gamma band external to the bands usually occupied by other tasks (the interval between
1 and 30 Hz), and the alpha band between 8 and 12 Hz.

Right hemisphere of the brain and gamma band of frequencies are particularly sensitive when
experiencing negative emotions, such as the disgust produced by smelling or remembering unpleasant
odors, while the alpha band is usually modified with concentration. This constitutes an advantage for the
proposed classification technique because it is made intrinsically easy by the localization into particular
positions and frequencies: different features are mostly based on different frequency bands.

The choice of disgust produced by remembering unpleasant odors is twofold: smelling is an ancestral
sensation which is so strong that its EEG signal is produced also in persons affected by hyposmia when
they imagine an olfactory situation; it can be used without external stimulation, that is the user can
decide freely when and if activate it.

The proposed method and the experimental setup are described and a series of experimental
measurements are presented and discussed. The accuracy of the proposed method is also evaluated and
the reached levels are about 90%. The proposed system can be a useful communication alternative for
disabled people that cannot use other BCI paradigms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The collected EEG signal can be divided into several bands of
frequency corresponding to different coarse activities. Delta band

A BCI is a computer-based communication system that collects
signals generated by voluntary neural activity of the Central Nervous
System (CNS) and its goal is to provide a new channel of output for
the brain that requires voluntary adaptive control by the user [1,2].
EEG is the technique used to measure these signals by placing
electrodes outside the skull [3], gives immediate responses (high
temporal resolution), is easy to use, safe, inexpensive and, for these
reasons, is effective to measure brain activity in a common BCL
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activity, up to 3 Hz, is mainly seen in deep sleep. Theta band
(4-7 Hz) is often observed with drowsiness or meditation. Alpha
band (8-12 Hz) is seen when people are awake, more apparent
when eyes are open, and a power decreasing is observed when
people engage in active processing and concentration [4]. Beta
band (13-30 Hz) is apparent with active thinking or concentration.
Finally, gamma band (30-100 Hz) is involved in a series of
cognitive processes, but new hypotheses [5,6] relates gamma
oscillations to three underlying processes: the comparison of
memory contents with stimulus-related information, the utiliza-
tion of signals derived from this comparison, and the presence of
emotional states. Modifications occur mainly around 40 Hz.
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A good part of communication BCIs for disabled people [7] is
based on event-related signals induced by external stimuli and
synchronized with them (an example is the P300 [8]). Another
consistent part is based on sensory-motor rhythm amplitudes
[9-11]. For patients with impaired vision, or suffering from seizures
attacks caused by too fast visual stimuli such those used in P300, or
that have never experienced the control of the motor part of their
body (they never knew what it means to move a limb), or whose
signals produced by sensory-motor rhythms, mostly at the alpha
band, can be easily confused with those due to artifacts caused by
involuntary and frequent movements, other paradigms, such as
auditory [12-14] and tactile [15,16], have been explored. However,
cases in which also these paradigms have little or no effect are
frequent [13]. For this reason, new ways have to be explored and
one of the most promising could be that of BCI based on measuring
the voluntary brain activity produced by emotions [5,17,18].

Emotions have been first explored in the field of affective
computing where some fascinating studies are dedicated in making
the computer more empathic to the user and involved the measure-
ment of the user's emotions and to represent them into human-
computer interaction systems [19]. Their aim is to find the activation
of specific brain regions in responses to specific emotions but, while
some regions are more active than others when experiencing specific
emotions, no specific region is activated by a single emotion [20,21].
In fact, the brain regions most responsible for emotions are amygdala,
insula, anterior cingulate cortex, and orbitofrontal cortex [22]. By
using fMRI, recently it has been found that there exist specific
patterns of brain activity, i.e. groups of brain zones, related to specific
emotions and that these patterns are common across individuals [23].

Though these advances, it remains very difficult to differentiate
between different emotions, especially across individuals, because
their patterns are very similar and can be confused each other and
because they are also subjective (i.e. different individuals can have
different ways to deal with emotions). Moreover, complex multi-
voxel pattern analysis techniques have to be used to identify
distributed patterns associated with specific emotions [24]. In
addition to that, EEG is still poorly used to classify emotions.
Choppin [25] used neural networks to classify EEG signals from
three emotions and got 64% classification accuracy. Chanel et al.
[26] also confirmed that EEG and other physiological signals can
be used to recognize emotions and obtained a classification
accuracy between 60% and 70%, very similar to that obtained by
Bos [27] or by Zhang et al. [28]. Wang et al. [29], by using advanced
machine learning classification approaches, obtained accuracy
above 90%. However, the previously listed works based the
recognition of emotions that were artificially elicited through
visual stimuli. The best would be to recognize a self-induced
emotional state, without any sort of external elicitation, to auton-
omously drive a BCI system.

A possible solution, offered by psycho-physiological research,
has shown that a more active left frontal region indicates a
positive reaction, and a more active right lobe indicates a negative
effect [30,31]. This makes negative emotions well distinguishable
from positive emotions. This is also confirmed in [23] where the
authors, by performing inter-emotion comparisons, located one of
the negative emotions, the disgust, in the opposite side with
respect to positive emotions, for example happiness. Between
these two emotions, the disgust, especially produced by an
unpleasant odor, seems to be stronger than happiness at least
when looking at its effects: vomit, increased sweating, heart rate
and chills. Moreover, its manifestation, related to the activation of
the right lobe is distinguishable from other mental tasks that like
positive emotions, tend to activate preferentially the left frontal
region of the brain. Finally, the disgust is supposed to be a
particular, unnatural and infrequent state of a person while, on
the contrary, it is supposed that happiness be the usual state. In

this case, it would be easier to recognize the disgust as a co-
nsciously activated state to perform a choice with respect to
happiness.

This would suggest that disgust can be used as a driving system
for an effective BCI, a binary BCI, where disgust (indicating YES, or 1)
has to be differentiated from the rest (indicating NO, or 0) to allow
very high accuracy. But how to elicit disgust? Is it necessary an
external source or a self-induced procedure could be sufficient?

Disgust can be elicited in different ways: by listening sounds, by
viewing videos or pictures, by smelling stinking odors or, more
interestingly, by remembering such disgusting situations [32,33].
Regarding the case of remembering smelling stinking odors, it has
been demonstrated with fMRI [32] that in patients with congenital
hyposmia, which had never been able to recognize odors, the brain
responded even when they imagined odors. Moreover, the regions of
the brain activated by odors in patients with congenital hyposmia
were similar to those in the other groups, though the degree of
activation was about 15% of that in subjects with a normal sense of
smell. Therefore, in these patients brain activation occurs also just by
imagining an odor. This is also more noticeable in subjects with a
normal sense of smell: once an odor has been experienced, odor
imagination is present, recallable, and capable of inducing a relatively
constant degree of brain activation even in the absence of the ability
to recognize an actual corresponding odor. This particularity can be
used to produce brain activation both due to pleasant and to
unpleasant odors. Being pleasant odors linked to positive emotions
and unpleasant odors linked to negative emotions, in particular to
disgust, a brain asymmetry is found when decoding pleasant versus
unpleasant odors (left hemisphere shows greater efficiency for the
decoding of pleasant odors, right hemisphere shows greater effi-
ciency for the decoding of unpleasant odors) [34].

Obviously, a direct elicitation would produce greater signals
than an imagined situation but, for a direct elicitation external,
mechanically driven, cumbersome, uncomfortable, and annoying
sources would be necessary, that leaves no room for free choices.
On the contrary, imagining a disgusting situation is a self-induced
procedure that can be, in principle, freely used to perform a choice,
when desired, involving the right hemisphere of the brain. These
considerations suggested us the possibility of implementing a
spatial-frequency (spatial referred mainly to the right hemisphere
of the brain; frequency, referred to the gamma and to the alpha
bands of frequencies) filter to be used in a self-induced disgust-
based EEG-BCI. The temporal synchronization could be given by a
repetitive (maybe audio-visual) interface to suggest different
possibilities to choose from. For this reason, in the present paper
we describe the classification strategy that can be used to
recognize the EEG signal modifications due to an auto induced,
voluntary, disgust produced by remembering unpleasant odors.

The aim is to give the basis for a binary BCI, based on the
recognition of an atavistic emotion, like disgust, produced by an
atavistic sense, like olfaction, without using any external elicitation
but imagining a previously experienced disgusting odor autonomously
elicited. It is important to note that, though a double status can, in
principle, be assumed (also by imagining pleasant odors), is difficult to
switch between two activations without getting tired and without
creating confusion to the classification method (other tasks could be
confused with positive emotions involving the left brain hemisphere).
For this reason, and to simplify the model, the binary and single-trial
EEG-BCI we imagine is based on remembering an unpleasant odor to
say YES, otherwise it is supposed that NO is chosen.

The manuscript is structured as follows: Section 2 details the
acquisition paradigm; Section 3 describes data analysis and
classification strategy; Section 4 reports and discusses experimen-
tal results, from data collected by 28 volunteers used to verify the
effectiveness of the paradigm and to evaluate the classification
accuracy; Section 5 contains conclusions and future work.



310 G. Placidi et al. / Neurocomputing 160 (2015) 308-318

Visualized on
the PC screen

+

y 3

NO

Time (sec.) |—t—t——}——1}

YES YES

T T T T T T
o 1 2 3 4 5 6

T T T T T T T 1
7 8 9 10 11 12 13 14

Fig. 1. Trial paradigm. Crosses and arrows are presented on the screen: the subject has to relax or remember a disgusting odor, respectively. Each symbol lasts for 3.6 s on the

screen.

Fig. 2. Red circles (a) indicate the used positions of the electrodes of the Enobio™t equipment in the 10-20 international localization system. 3D localization (b) of the
electrodes used by the classification strategy. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2. The proposed acquisition paradigm

In order to verify that the disgust derived by remembering an
unpleasant odor produces a specific EEG signal combination that can
be easily recognized and classified, we analyzed EEG data from
experiments conducted on 28 healthy subjects (18 men and 10
women, age: 36 +3.5), divided in 4 groups, each composed by
7 subjects. In the following we use the notation Sx.y to indicate the
yth subject of the xth group (x represents the group and y represents
the subject). Of the whole set of subjects, S1.3, S2.5, S3.2, S3.4, S3.5,
S4.1 and S4.6 were left handed (5 men and 2 women).

The grouping of the subjects was random and its simple scope
was to organize a temporal schedule for the experiments in
different days. For this reason, data regarding the analyzed sub-
jects were treated as allowing to a single, large, group.

During the experiment, the examined subject was sat in a comfor-
table armchair with the arms lying relaxed on the arms of the chair, in a
quiet and lit room. The experiment consisted in showing a sequence of
symbols “+” or “|. ", each presented for 3.6 s on a computer screen
(Fig. 1). The order of presentation was random but the number of
symbols “+” was equal to the number of symbols “ |} ” and their sum
was always the same. It is important to note that the scope of using
these graphic sequences was just to synchronize the tasks and not to
elicit the emotion. This is the reason why we choose anonymous
symbols, that is not directly attributable to disgust or to relax. In the
same time, we excluded the brain region responsible of processing

visual information, the occipital channels, from classification (the
occipital signals have not even been measured, as described see below).
Each subject was instructed to be relaxed (during the cross) or to
remember an unpleasant odor (during the arrow). In the activated
status (during the arrow), the subject had to remember a disgusting
situation produced by an unpleasant odor. It is important to note
that the disgust had to be produced by remembering a subjective
unpleasant olfactory situation and not, for example, by remember-
ing another disgusting situation (an image evoking disgust was
acceptable if this was accompanied by a joint disgusting odor).
Moreover, being the proposed activation strategy also an
imagination task that should involve the usage of the working
memory area, we excluded the frontal channels to avoid influences
of EEG signals coming from the frontal region, as done for the
occipital channels responsible of visual information processing.
Two sequences containing 100 trials (50 trials for each class, where
a class was associate to “+” and another to “ |} ") were recorded for
each subject. In each test (or sequence), the trials of the two classes
were mixed in a random order, executed without interruptions for
12 min. The order of execution of the two tests was cyclic: from Sx.1 to
Sx.7, for x=1.7, respectively, with 18 min of interruptions between
consecutive subjects (for preparation of the following subject), and
another break of one hour between the two tests. In this way, each
subject experienced a relaxing period of about 4.5 h between the first
and the second test. The day before the tests, all subjects were
summoned at the same time and received instructions, through the
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Fig. 3. Signal classification system. The system is first calibrated and then the collected signals are preprocessed and their features extracted and compared with those of the

labeled trials stored after calibration.

480 pt
;"H'*y‘ " /wl " NN". fﬁ )
PN NN \x I\ AR
MMJ” WWJ l" mrh“1 "J"l h’u‘” .er'ﬁ I’lﬂ ) 1 / lmv'w / N
0.06sec " M T, ;N
s %M /W ¥
30pt

Fig. 4. Signal pre-processing scheme. Each signal, whose duration is 3.6 s, is broken into 4 pieces and the STFT is calculated on each piece after the elimination of a linear
trend. The considered pieces have a common, overlapping, zone (30 sampled points, corresponding to 0.06 s).

projection of a brief video, on the modality and duration of the tests.
At the end of the driven instruction procedure, the subjects were
encouraged to ask and discuss what remained still unclear and, finally,
were summoned for the next day, separately, 30 min from each other.

The system used to record the EEG was Enobio™E® [35], an
8 channels (two more channels are used one as reference and
another for ground) precise and robust wireless EEG equipment
that uses a neoprene cap to fix the channels in the desired brain
locations. Thanks to the supporting software, the channels can be
dynamically associated to variable positions in the international 10—
20 system [36]. The channels of the 10-20 international system we
used were the following: P4, C4, T8, P8, P3, C3, T7 and P7 (Fig. 2a).
As will be clarified below, signals from the channels P3, C3, T7 and
P7 had a limited use for the classification strategy: these signals
were used just for confirmation of the classification choice.

We used dry copper electrodes (coated by a silver layer) fixed to
the cap that ensured the contact with the subject's scalp. The electric
conduction was ensured just by contact: the electrodes terminated
with a circular series of contact tips to pass through the hair. For the
reference and ground channels, located just behind the right ear in a
region not covered by the cap and by hair, the fixing strategy was
ensured by adhesive, disposable, flat gel-containing connectors to
whom the electrodes were plug in. Main features of Enobio™E® were:

amplitude resolution of 24 bits (0.05 uV); sampling rate of 500 Hz;
sampled signals were filtered between 1 Hz and 46 Hz; data were
analyzed and classified by a specific algorithm (described below)
implemented in Matlab® [37], by using the environment BCI2000
and its visualization utilities [38]. The BCI2000 software, in fact,
contains the utilities to capture the signals directly from Enobio™E®
and to process them with its internal functions.

3. Data analysis and classification

After an initial evaluation, signals were filtered with a band-pass
filter to maintain just the frequencies between 8 and 12 Hz
(demonstrating cerebral activity due to concentration) and between
30 and 42 Hz (demonstrating disgusting activity at the gamma
band). Moreover, the only considered channels are P4, C4, T8 and
P8, those mainly involved in remembering negative emotions,
especially due to disturbing odors (Fig. 2b). It is important to note
that, at an early processing phase, we also analyzed other frequency
bands. In particular, we found some modifications in the beta band
but these were very unstable because they changed many times
both in amplitude and in frequency position during the same task in
each subject. This behavior was observed in most of the examined
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subjects. For this reason, and for the fact that the beta band is not
considered to be peculiar for emotions, we completely excluded it
from the analysis. The way the chosen bands were used in the
classification strategy, and further reduced, are discussed below.

The strategy used to classify the signals was preceded by two
phases (see Fig. 3): preprocessing and feature extraction, both for
calibration and test (in the calibration step, a further phase, consist-
ing in the labeling of some trials, was performed to indicate to whose
signals corresponded YES and to whose corresponded NO).

The preprocessing phase consisted in the application of the
Short Time Fourier Transform (STFT), i.e. the multiplication of a time
window to the input signal before the calculation of the Fourier
Transform, after the elimination of a trend from each windowed
portion of the signal. The applied STFT was the following:

S(w.7) =" SX(tyw(ty—1))e " M

where S was the transformed signal, in the parameters @ (frequency)
and 7 (window position), t, were the sampled points of a signal, and
o was a de-trend function (used to eliminate a linear trend from the
windowed portion of the signal) necessary to eliminate leakage from
the windowed signal (note that this operation would not modify the
information content of the signal at the considered frequency bands).
In our experiments, we used 4 partially overlapping windows to
calculate the STFT (see Fig. 4). Each window was 0.96 s in duration
(corresponding to 480 points at 500 Hz) and overlapped of 0.06 s
with the nearest window (corresponding to 30 points at 500 Hz). In
this way, we ensured a frequency resolution of about 1.04 Hz. We
used STFT to maintain, of the whole time interval, the most similar
periods and to perform the average on these similar data.

Data similarity between pieces of signals was evaluated by
calculating the 2, defined as follows [39,40]:

2
2(f) = <\/L1L2 u(XM)—u(XzC)) @

Li+L; o(X1cUX20)

where X;. and X, were the compared pieces of power spectra of the
signal corresponding to the channel ¢ and defined into a neighbor-
hood 2Af of f (2Af had to be not too wide to avoid loss of resolution,
usually it is 3 or 5 Hz), L; and L, were the numbers of samples (in our
case L;=L), n was the mean value, and o the standard deviation.
Large r* denoted low similarity (or, equivalently, high dissimilarity)
between the considered pieces of signals. In the feature extraction
phase of the calibration, the 4 pieces of the signal were compared:
the worse piece of each signal, according to 2, was discarded and the
power spectra of the remaining pieces were averaged together.
Signals coming from different channels were maintained separated.
During calibration this operation was repeated on each signal, both
for activations and for relaxations. For the whole set of activations,
joint r* was calculated again: the 3 most similar power spectra were
retained and averaged together and the worse was discarded. This
process was repeated for each considered channel. The same
procedure applied to the power spectra of the relaxing signals. At
the end of the process, two resulting pieces remained for each
channel, one for activation and one for non-activation, and the pieces
corresponding to different channels, separately for activation and
non-activation, were averaged together.

Aim of the previously described operations was to make the
classification method robust against artifacts partially affecting the
trial, such those present in the initial part of a trial and caused by
the difficulty for a subject to switch instantly from a task to
another (from a “+” to a “ |} ” and vice-versa).

At this stage, > was calculated again between these signals and
one sub-interval of 5 Hz of frequencies was considered around the
maximum value of ? occurring inside each of the considered bands.
This operation was performed to refine the band selection, being

this positioning very subjective (inter-subjects variability) and also
varying with time in the same subject (intra-subject variability).

The maximum values of 1? occurring inside each of these bands,
and the absolute minimum of 1%, were also used to define two
thresholds ¢, and t,:

te =1/2(max(r2) — min(r2)) (33)

t,=1/2 (max(r?) — min (ri)) (3b)

The previous threshold allowed the classification of the current
signal. During calibration and by using Eqgs. (1) and (2), signals
from the channels in the left hemisphere of the brain were
preprocessed in the same way used for the corresponding chan-
nels in the right hemisphere.

Besides that, for the excluded channels (left hemisphere) the
parameter and p, a threshold value indicating the typical distance
between activation and non-activation, was calculated as follows:

b= Z Z s<feas  Te(f) 4

c e Excl. channels feSampled Freq.

where 1? was evaluated between activation and non-activation, ¢
and f indexed the excluded channels and the sampled frequencies
(the values 5 and 46 represented, in Hz, the lower and upper limit
of the sum), respectively.

The classification strategy used for the collected data (signals
from right hemisphere) measured for 3.6 s, can be summarized in
the following steps:

For each channel

1. Calculate the STFT for the signal divided into 4, partially
overlapping, pieces (Fig. 4);

2. Calculate the mutual r? of the resulting spectra to discard the
worse piece and average the other pieces;

End;

3. Average the resulting spectra from different channels;

4. Compare the resulting spectra, by using 1, with those regis-
tered in the calibration stage for the activation and the non-
activation and classify the current dataset;

5. If step 4 classifies an activation, Eq. 4 is evaluated between the
current dataset and the activation dataset stored during cali-
bration. Let p. be the resulting value;

6. If p. < p, then the activation is confirmed, elsewhere the current
dataset is corrupted (a false positive occurred) and has to be
discarded;

7. Return.

Step 4 of the previous strategy is summarized in Table 1: one of
the represented outcomes could occur for the considered dataset.
The 12 evaluation was from left to right of the table (that is, first the
signal was compared with the activation signal, y band before
band, and then with the non-activation signal). The first two rows of
the table were the most frequent. However, due to the presence of
noise on the collected signal, or to the modification of the conditions
of the system (the EEG signal is strongly non stationary), or to an
inconstant concentration of the subject on the assigned task, also
other outcomes could be possible. In particular, the worst cases were
those represented on rows 4 and 7 of Table 1 (clearly contradictory)
and, in case of occurrence, the dataset should have been discarded
and repeated when used in a real-time BCI. Obviously, also row 8
represented an edge situation. Rows 5 and 6 had these outcomes
because the technique was driven by what happened in the y band
first. However, those limit cases, though treated, were expected to be
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Table 1

313

Scheme of the classification method. The signal is first compared to the Activation data, both in the y and in the « bands (columns 2 and 3) and then, if necessary, to the Non-
Activation data in the same bands (columns 3 and 4). The column RESULT represents the consequence of each combination given in the corresponding row (A and NA
represent Activation and Non-Activation, respectively). Void cells correspond to contradictions (the classification strategy is unable to decide between A and NA). In case of

contradiction, data acquisition should be repeated in a real-time BCL.

ACTIVATION (A) NON ACTIVATION (NA) RESULT
7 a b4 a
1 1A=ty 2a>t, DON'T CARE DON'T CARE NA
2 1A <ty 12p < to DON'T CARE DON'T CARE A (Verify at Step 5)
3 2a>ty 12 <ty 2N >ty 2nA > to A (Verify at Step 5)
4 Rty A<ty a2ty T8NA < o
5 ra >ty 1 <ty éna <ty DON'T CARE NA
6 12a <ty A= t, rna >ty DON'T CARE A (Verify at Step 5)
7 réa <ty Aty éna <ty TENA 2 o
8 ria<ty A=ty 3na <ty 1éna < to NA
Table 2

Summary of experimental results. For each subject (rows), the reported data indicate, for each test and for each class of trials (Activation or Non-Activation), the amount of
trials recognized as Activation (A), Non-Activation (NA) or Not Recognized (columns indicated in gray and represented with a “?”). The optimal frequencies and the
classification accuracy are also reported. Mean values and standard deviations of data in each column are also shown. Subjects labeled with (*) were left-handed.

SUB TEST1 TEST 2 Afa Afy AACC TOTAL ACC.

ACTIVATION NON ACTIVATION a Y ACC. (%) ACTIVATION NON ACTIVATION a b4 ACC. (%)

TRIALS TRIALS TRIALS TRIALS

A NA ? A NA ? A NA ? A NA ?
S11 41 3 1 4 40 1 94 418 90,0 41 4 0 3 42 0 10,5 39,7 92,2 1,0 21 22 91,1
s1.2 37 7 1 3 42 0 84 335 878 41 4 0 5 40 0 84 33,5 90,0 00 00 22 88,9
S14 39 6 0 1 43 1 10,5 39,7 911 38 7 0 3 42 0 11,5 37,7 88,9 10 21 -22 900
S1.5 36 8 1 2 43 0 84 335 878 42 3 0 4 41 0 84 377 922 00 42 44 90,0
§1.6 38 5 2 6 36 3 84 377 822 33 n 1 2 42 1 94 39,7 833 1,0 21 11 82,8
S1.7 37 8 0 5 39 1 11,5 36,6 84,4 38 7 0 5 39 1 10,5 35,6 85,6 1,0 1,0 11 85,0
S21 42 3 0 5 40 0 94 408 911 42 3 0 3 42 0 94 408 933 00 00 22 92,2
§22 37 6 2 4 41 0 11,5 36,6 86,7 37 8 0 4 40 1 11,5 36,6 85,6 00 00 -11 861
§23 38 7 0 2 42 1 10,5 39,7 88,9 38 7 0 3 41 1 94 387 878 10 10 -11 883
§24 36 7 2 4 40 1 94 36,6 844 38 7 0 3 39 3 11,5 35,6 85,6 21 10 11 85,0
S26 42 3 0 1 44 0 94 356 956 42 3 0 2 43 0 84 356 944 1,0 00 -11 950
§2.7 38 6 1 4 41 0 11,5 41,8 878 41 4 0 4 41 0 11,5 38,7 911 00 31 33 89,4
$31 43 2 0 7 37 1 10,5 32,4 889 43 2 0 5 40 0 10,5 32,4 92,2 00 00 33 90,6
S33 42 2 1 3 41 1 94 356 92,22 43 1 1 3 41 1 94 335 933 00 21 11 92,8
S36 43 2 0 4 41 0 11,5 41,8 93,3 43 2 0 4 41 0 10,5 40,8 93,3 10 10 00 93,3
§3.7 40 4 1 4 40 1 11,5 37,7 889 40 4 1 6 38 1 11,5 35,6 86,7 00 21 -22 878
$42 42 2 1 2 42 1 11,5 408 93,3 42 2 1 1 44 0 11,5 41,8 95,6 00 10 22 94,4
$43 42 3 0 3 40 2 94 397 911 42 2 1 3 41 1 84 377 922 10 21 11 91,7
$44 40 4 1 3 40 2 10,5 34,5 88,9 41 3 1 5 40 0 11,5 36,6 90,0 1,0 21 11 89,4
$45 40 5 0 2 43 0 10,5 40,8 92,2 40 5 0 0 44 1 10,5 40,8 93,3 00 00 11 92,8
$4.7 38 6 1 8 37 0 94 397 833 40 4 1 8 37 0 84 418 856 10 21 22 84,4
s1.3° 38 6 1 4 40 1 84 38,7 86,7 41 4 0 4 39 2 94 39,7 889 1,0 10 22 878
s25 41 2 2 3 42 0 10,5 356 92,2 42 1 2 1 44 0 10,5 36,6 95,6 00 10 33 93,9
s32° 36 9 0 1 43 1 94 345 878 37 7 1 1 42 2 94 324 878 00 21 00 878
s34° 41 4 0 4 38 3 10,5 324 878 40 5 0 5 40 0 94 324 889 10 00 11 88,3
$35° 36 9 0 3 40 2 84 418 844 36 8 1 4 41 0 84 40,8 85,6 00 10 11 85,0
s41” 38 7 0 1 44 0 10,5 33,5 911 42 3 0 4 41 0 10,5 32,4 92,2 00 10 11 91,7
$46° 36 8 1 3 40 2 84 345 844 36 9 0 4 41 0 94 335 856 10 1,0 11 85,0
MEAN 392 51 07 34 407 0,9 10,0 374 88,7 400 46 04 35 40,9 0,5 10,0 371 89,9 06 13 1.2 89,3
STID 23 23 07 17 2,0 0,9 11 31 33 2,5 25 06 17 1,7 0,8 11 31 35 06 10 02 33

rare. In principle, they should be impossible and, if occurring
frequently, it could be the sign of one of the following situations:

1) the selected channels or the classification strategy or the
selected frequency bands were not adequate;

2) the acquisition conditions were considerably changed and a
new calibration is necessary;

3) the subject was no longer focused on the task.

Clearly, the first situation could occur ever, also immediately
after a calibration (also indicated by the fact that the two classes,
activation and non-activation, would be very close). On the

contrary, the second situation could occur only when a long time
interval elapsed after a calibration. In this second case, the method
would have been effective.

Step 5 of the proposed algorithm would eliminate false positive
activations. An apparent activation (false) could occur when
external noise (caused for example by subject's movements,
electromagnetic disturbances, etc.) heavily modified the EEG
signals. In this case, modifications would modify both the used
channels and the discarded channels, affecting all the frequency
bands. For this reason, in the case of a presumed activation, the
trial was compared with the activation stored in memory during
the calibration phase, for all the frequencies and for those channels
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where activation was supposed to have very limited effects. If the
trial was clearly different from a standard activation (the integral
of the r? function was greater than a value, considered as a
threshold, calculated between a standard activation and a stan-
dard non activation during the calibration), probably external
noise had significantly affected the signals and a false activation
had occurred. Elsewhere the activation was confirmed.

4. Results

Data collected from the 28 treated subjects were analyzed by using
the threshold classification algorithm described above. It is important
to note that none of the treated subjects was discarded from the test
and that, for each subject, all trials were classified and results included.
For each test, the first 10 trials (5 arrows, or A, and 5 crosses, or NA)
were used to calibrate the system and to calculate, for each subject, the
optimal y and a frequencies and the thresholds ¢, and t,. The
remaining trials were used to evaluate the accuracy of the system
(calculated as the percentage of the rightly classified answers with
respect to the total answers to be given) to test the classification
performance.

Classification results are summarized in Table 2. In order to
demonstrate that the brain activation was independent of being
right-handed or left-handed, data were separated in right-handed
and left-handed subjects not by order of experiments (the order
and group of experiment is recognizable by the name assigned to
the subjects, as explained above). For each subject, the accuracy was
calculated for both tests and the results were shown separately. The
reason was twofold: from one side, this allowed to verify the
accuracy increment due to the improved capacity of the subjects
to concentrate on the task; from the other side, this served to
highlight the eventual modifications of the optimal reference
frequencies values, both in y and a bands, from one test to the other.

By analyzing the reported data, it can be observed that the
resulting average accuracy was 88.7% for the first test and 89.9% for
the second. The small accuracy increment that interested 23 out of
28 subjects from the first to the second test, though not particularly
evident, was probably due to the fact that most of the subjects
found easier to concentrate on the task in the second test with

respect to the first, as confirmed by 26 out of 28 subjects
interviewed after the second test. In fact, though they judged the
task very simple from the beginning, they found a better familiarity
with the second test than with the first. However, in some case the
accuracy decreased from the first to the second test. The explana-
tion of these little variations could also due to a different choice of
the optimal reference frequencies in the second test with respect to
the first: for some subject (for example S1.1, where accuracy
increased, or S2.3, where accuracy decreased) these modifications
were accompanied by a significant accuracy modification.

To exclude this possibility, we repeated the classification
procedure by inverting the frequency parameters (in the first test
we used the parameters previously set for the second test and vice
versa) and we found that the accuracy worsen in any case (average
difference: -1.6%), though the results are not shown. This confirms
that: the little improvement was due to the increasing of famil-
iarity of the subjects with the task; little modifications in
frequency parameters values did not modify accuracy significantly.
Moreover, though 4.5 h elapsed between the first and the second
test, intra-subject changes in optimal frequency values were small.

The global average accuracy was 89.3%, the best response occurred
from S2.6 (95%), the worst from S1.6 (82.8%). An important aspect is
that the classification strategy used rows 4 or 7 of Table 1, giving the
answer “DON'T KNOW” (indicated in Table 2 with the symbol “?”)
occurred very rarely (globally, 1.39% of the total trials were classified
as “?”). This demonstrates that, though possible (due to the presence
of experimental noise), these cases were highly improbable.

It is also important to note that the condition in Step 6 of the
proposed algorithm never became false for the considered experiments.
This was probably due to the fact that the experimental noise was low
(electromagnetic interferences were very low, being the experiments
conducted in a controlled environment, and the movements of the
subjects were almost absent due to the low duration of the tests).

The obtained experimental results also demonstrated that the
proposed approach and the classification method were indepen-
dent of the fact that the analyzed subjects were right-handed
(specific average accuracy of 89.6%) or left-handed (specific
average accuracy of 88.5%). In fact, to underline this aspect and
to show that the produced activation was always located on the
right hemisphere of the brain, the r* maps of two subjects, one

r?Values Between Activation and Non-activation
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Fig. 5. Function r? calculated between Activation and Non-Activation on a 10-trials sequence for the subject S4.2.
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12.00 Hz

40.00 Hz

Fig. 7. Scalp maps representing the power spectrum of the signals during an Activation (a) and a Non-Activation (b) measured in the gamma band for the subject S4.2.

right-handed (S4.2) and the other left-handed (S2.5), are explicitly
reported. Regarding the subject S4.2, the function 12, calculated on
a 10-trial sequence (5 arrows and 5 crosses), is shown in Fig. 5, for
all channels and frequencies, and in Fig. 6, for 12 Hz and 40 Hz,
respectively. For this specific subject, activations were so strong in
the y band to be directly recognizable in the signal power
spectrum (? would not have been necessary), as shown in Fig. 7.
However, despite well distinguishable activations, the obtained
accuracy was 94.4%, that is lower than 100%.

This could be due to concomitant factors: limitations of the
classification strategy; changes in the optimal frequency values during
the test that induced mistakes in classification; the subject did not
follow the instructions of the task for the whole duration of the test.
Though the first two factors are directly attributable to the classification
strategy, the last was due to the subject. However, we had no way to
separate the causes of the anomalous classification results. For this
reason, being the accuracy calculated including all the wrongly
classified datasets, it represented an underestimate of the true accuracy
level. In a real implementation of a BCI that can be autonomously

driven by the user, the effect of this term should be greatly reduced
because the motivational boost of the subject should increase.
Regarding the subject S2.5, the corresponding results are
reported in Figs. 8 and 9 (for this subject the power spectrum was
not discriminant and is not shown). In both case, as for the whole
set of the analyzed subjects, the activity was mainly concentrated in
the y band and in the a band of the right hemisphere of the brain.

5. Conclusions and future developments

An innovative paradigm to generate self-induced EEG signal
and a binary, threshold-based, classification algorithm have been
presented and used to classify disgust produced by remembering
an unpleasant odor. Both the particular activation task and the
proposed classification strategy are novel.

The proposed paradigm has been tested on 28 healthy subjects
that found the task very simple and natural. Moreover, they learned
the protocol very fast and considered it not tiring, though 55% of them
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Fig. 8. Function 12 calculated between Activation and Non-Activation on a 10-trials sequence for the subject $2.5.
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Fig. 9. Function r? calculated between Activation and Non-Activation on a 10-trials sequence calculated on 10 Hz (left panel) and 36 Hz (right panel) for the subject S2.5.

at the end of the tests affirmed that they were unable to maintain a
high concentration level for the whole duration of the tests.

Regarding the classification strategy, it resulted effective and
accurate (about 90% in the average), though the obtained value
was an underestimate of the effective value. In fact, the accuracy
evaluation also counted the mistakes done by the classification
algorithm when examining signals with very low useful informa-
tion due to the loss of concentration of the examined subjects.
Though we could not quantify the contribution of this effect, we
can affirm that the effective accuracy was above 90%. These good
performances were mainly due to the use of the y band, which is
unusual for the great part of the commonly brain activities.

The results were independent both of the fact that the analyzed
subjects were right-handed or left-handed and also that the subjects
used their eyes to be synchronized with the proposed cues because

we did not use the occipital channels for classification. Moreover, the
symbols used were anonymous and had no affinity with the task:
their presentation served just to synchronize the subjects and not for
eliciting disgust or relaxation. However, due to the fact that the
proposed task, besides emotive, was also both a visual stimulation
and an imagination task (the subject had to observe a symbol on a
computer screen and to associate it to a negative olfactory situation
by remembering a really lived experience), both occipital and frontal
channels were excluded from the measurements to avoid the
influence of the visual and imagination components.

Future work will first be devoted in the implementation of a
single trial binary BCI based on the proposed paradigm and
classification algorithm. Moreover, efforts will be dedicated to use
optimization algorithms, such as the common spatial pattern and
its variants [39,40], as classification strategies (on the same data),
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and to compare them with the proposed method both in accuracy
and in efficiency. Time will be dedicated to study other well-
distinguishable emotional states to work alongside the disgust to
increase the number of choices. Moreover, the proposed paradigm
will be tested with trials of shorter duration (here we used 3.6 s: we
aim at reducing this interval to 2 s) and the system will be evaluated
by using a standardized evaluation framework [41].

The obtained results are very encouraging and allow us to
believe that the proposed system can became a useful, though
simple, communication tool for disabled people for which other
BCI paradigms are useless.
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