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Recently, multifocal transcranial current stimulation (tCS) devices using several relatively small electrodes have
been used to achieve more focal stimulation of specific cortical targets. However, it is becoming increasingly
recognized that many behavioral manifestations of neurological and psychiatric disease are not solely the result
of abnormality in one isolated brain region but represent alterations in brain networks. In this paper we describe
a method for optimizing the configuration of multifocal tCS for stimulation of brain networks, represented by
spatially extended cortical targets. We show how, based on fMRI, PET, EEG or other data specifying a target
map on the cortical surface for excitatory, inhibitory or neutral stimulation and a constraint on the maximal num-
ber of electrodes, a solution can be producedwith the optimal currents and locations of the electrodes. Themethod
described here relies on a fast calculation of multifocal tCS electric fields (including components normal and
tangential to the cortical boundaries) using a five layer finite element model of a realistic head. Based on
the hypothesis that the effects of current stimulation are to first order due to the interaction of electric fields
with populations of elongated cortical neurons, it is argued that the optimization problem for tCS stimulation can
be defined in terms of the component of the electricfield normal to the cortical surface. Solutions are found using
constrained least squares to optimize current intensities, while electrode number and their locations are selected
using a genetic algorithm. For direct current tCS (tDCS) applications, we provide someexamples of this technique
using an available tCS system providing 8 small Ag/AgCl stimulation electrodes. We demonstrate the approach
both for localized and spatially extended targets defined using rs-fcMRI and PET data, with clinical applications in
stroke and depression. Finally, we extend these ideas to more general stimulation protocols, such as alternating
current tCS (tACS).

© 2013 Elsevier Inc. All rights reserved.

Introduction

Transcranial current stimulation (tCS) is a noninvasive brain stimu-
lation technique in which weak, constant or slowly varying electrical
currents are applied to the brain through the scalp. tCS includes a family
of related non-invasive techniques including direct (tDCS), alternating
(tACS) and random noise current stimulation (tRNS). These techniques
use scalp electrodes with electrode current intensity to area ratios of
about 0.3–5 A/m2 at low frequencies (typically b1 kHz) resulting in
weak electric fields in the brain, with amplitudes of about 0.2–2 V/m
(see Miranda et al. (2013) and Ruffini et al. (2013) and references
therein). The neuromodulatory effect of thesefields has been confirmed

inmany laboratories (Antal et al., 2008; Nitsche and Paulus, 2001, 2000;
Terney et al., 2008). In a typical tDCS experiment, a continuous current
of 1–2 mA is applied for up to 20 min through two large stimulation
electrodes (25–35 cm2). For therapeutic applications, such as post-
stroke rehabilitation (Khedr et al., 2013) or the treatment of depression
(Loo et al., 2012), tDCS is usually applied daily for five days, during one or
more weeks.

While tCS interventions typically focus on a single cortical target, it is
widely recognized today that many behavioral manifestations of neuro-
logical and psychiatric diseases are not solely the result of abnormality
in one isolated brain region but represent alterations in brain networks
(see, e.g., Fox et al. (2012b) and references therein). In this context, and
provided a specification for the location and type of stimulation effects
is available, brain networks become the target of neuromodulatory
interventions. Advances in neuroimaging technology such as positron
emission tomography (PET), electroencephalography (EEG), magneto-
encephalography (MEG) and resting-state functional connectivity MRI
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(rs-fcMRI) are allowing us to non-invasively visualize brain networks in
humans with unprecedented clarity. In a parallel and timely develop-
ment, technologies have become available today which enable the use
of more than two electrodes for stimulation, making possible multifocal
stimulation of brain networks. Determining the ideal configuration of a
multi-electrode tCS system, however, is complicated by the fact that
transcranial brain stimulation effects are largely non-local due to Ohmic
propagation effects. For this reason, optimization algorithms based on
precise models and globally defined, cortical targeting data are needed.

As an especially interesting example, we discuss the use of rs-fcMRI
seed maps (Fox et al., 2012b; Shafi et al., 2012) for defining cortically
extended tCS targets. In contrast to traditional task-based fMRI, resting
state fcMRI examines correlations in spontaneous fluctuations in the
blood oxygen level dependent (BOLD) signal in the absence of any
explicit input or output, while subjects simply rest in the scanner (see,
e.g., Buckner et al. (2013), and references therein). A consistent obser-
vation is that regions with similar functional properties, such as the
left and right motor cortices, exhibit coherent BOLD fluctuations even in
the absence ofmovement under resting conditions. Negative correlations
(anti-correlations) between regions with apparent opposing functional
properties have also been observed (Fox et al., 2005). Significant
rs-fcMRI abnormalities have been identified across almost every
major neurological and psychiatric disease (for a review see Fox and
Greicius, 2010), and differences across subjects in rs-fcMRI are repro-
ducible across scanning sessions and have been related to individual
differences in anatomical connectivity and behavior.

One of the most valuable clinical uses of rs-fcMRI may be to predict
how focal brain stimulation will propagate through networks, thus
informing the ideal site for stimulation (Fox and Greicius, 2010; Fox et
al., 2012b). Recently, Fox et al. (2012b) used rs-fcMRI to identify differ-
ences in functional connectivity between effective and less effective
DLPFC stimulation sites (M. Fox et al., 2012; Fox et al., 2012b). Signifi-
cant differences in connectivity were seen with the subgenual cingulate
(SG), a region repeatedly implicated in antidepressant response and an
effective DBS target (Drevets et al., 2008;Mayberg, 2009;Mayberg et al.,
2005). Based on this finding, Fox et al. used rs-fcMRI with the SG to
identify theoretically optimal TMS target coordinates in the left DLPFC
(Fox et al., 2012a). A similar strategy can be applied to other neurolog-
ical diseases with effective or potentially effective DBS sites including
Parkinson's disease, dystonia, essential tremor, Alzheimer's disease,
and even minimally conscious state. An important challenge with this
approach is that rs-fcMRI with an effective DBS site does not identify
just a single cortical site, but many. In fact, it provides a continuous
pattern across the cortical surface of regions that are both positively
and negatively correlatedwith the deep brain stimulation site of interest.
Realizing the full potential of this targeting approach thus requires the
ability to simultaneously excite or inhibitmultiple sites across the surface
of the cortex. As we will see below, the same occurs with targets from
other imaging techniques, such as PET. While conventional TMS and
tDCS technologies allow for only one or two stimulation sites, the
multi-electrode approach perfectly complements this scientific and
therapeutic need.

The mechanisms underlying the after-effects of tDCS are still the
subject of investigation, but in all cases these local changes are brought
about by the accumulated action of the applied electric field over time,
directly or indirectly. For this reason we focus here on electric field op-
timization. Moreover, given that there are strong directional effects in
the interaction of electric fields and neurons, i.e., neurons are influenced
mostly by the component of the electric field parallel to their trajectory
(Bikson et al., 2004; Fröhlich and McCormick, 2010; Ranck, 1975;
Rattay, 1986; Roth, 1994; Rushton, 1927), and that the effects of tDCS
depend on its polarity, knowledge about the orientation of the electric
field is crucial in predicting the effects of stimulation. The components
of the field perpendicular and parallel to the cortical surface are of special
importance, since pyramidal cells aremostly aligned perpendicular to the
surface, while many cortical interneurons and axonal projections of

pyramidal cells tend to align tangentially (Day et al., 1989; Fox et al.,
2004; Kammer et al., 2007). Thus, an important element in modeling is
to provide the electric field distribution and orientation relative to the
gray matter (GM) and white matter (WM) surfaces (the latter might be
important to study the possibility of polarizing corticospinal axons,
their collaterals and other projection neurons). In order to do this, we
work here with a realistic head model derived from structural MRI im-
ages (Miranda et al., 2013) to calculate the tCS electric field components
rapidly from arbitrary EEG 10–20 montages. Importantly, this modeling
approach allows for fast calculation of electric field components normal
and parallel to the GM andWM surfaces.

In what follows, we show how to use neuroimaging data to specify a
target map on the cortical surface for excitatory, inhibitory or neutral
stimulation, and how, given constraints on the maximal number of
electrodes and currents, a solution can be produced with the optimal
electrode currents and their locations. The main differences of our
approach with other recent efforts stem from a) the overall concept
of working with extended, weighted cortical pattern target maps
based on fMRI, PET, EEG, MEG or other data, b) the emphasis on op-
timization of an electric field component as opposed to its magnitude
or intensity (as in, e.g., Sadleir et al. (2012)), c) the definition of
targets based on a coordinate system relative to the cortical surface,
with targets for normal (E⊥) and tangential (E||) components of electric
field (as opposed to “radial or normal to the skull” as in Dmochowski et
al. (2011), and d) the use of advanced algorithms to optimize not only
currents but also the number and location of electrodes given appropri-
ate constraints. Finally, in the discussion section we address the gener-
alization of these methods to tACS, although in a more exploratory
fashion.

Methods

General statement of the problem

The non-invasive stimulation problem can be loosely classified as
follows: a) single localized target, b) bipolar or, more generally, multi-
polar localized targets and c) pattern targeting. An issue that typically
arises in the single target case is how to deal with the return current,
since the laws of physics require current conservation and thus a mini-
mum of two electrodes need to be applied. The return (or “reference”)
electrode is normally positioned in an area which is presumed not to
play a role (e.g., “over the contralateral supra-orbital region”), and some-
times it is chosen to have a larger area than the “active” one so that its ef-
fects diffuse (Nitsche et al., 2007). More modern approaches include the
so-called “high-definition tDCS”, where a return arrangement of elec-
trodes is placed close to the active electrode (see, e.g., Dmochowski et
al. (2011), and references therein) or more general quasi-monopolar
montages such as the one described below, which employ an array of
optimally-placed return electrodes (see Targeting localized cortical
regions section and Fig. 1).

In bipolar ormulti-polar targeting, twoormore discrete targets are ac-
tually sought, some excitatory (anodal) and others inhibitory (cathodal)
(as in, e.g., Chib et al. (2013), Ferrucci et al. (2009), Lindenberg et al.
(2010) andMahmoudi et al. (2011)). This situation will normally require
the use of small electrodes, as electric field defocusing may be an issue if
large electrodes are used. An example is provided below (see Targeting
localized cortical regions section and Fig. 2).

More generally, we have the possibility of global cortical targeting
designed to achieve a more effective neuromodulatory outcome. In
the case of tDCS, such a map may just be a specification of the areas to
excite, inhibit, or leave unaffected, with a particular weightingmap pri-
oritizing each of them.We provide examples on the use of PET and rs-
fcMRI generated target maps in sections Cortical pattern target from
PET and Cortical pattern target from rs-fcMRI respectively.

In the following, andwithout loss of generality, wemake the discus-
sion concrete by adopting the StarStim device specifications (produced
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by Neuroelectrics Barcelona, Spain). This device provides up to 8 inde-
pendently controlled stimulation electrodes (allowing for programmable
linear combinations of DC, AC or RNS currents at each electrode). The
maximal current delivered by any electrode is 2 mA, while for safety
the system constraints the maximal current injected into the brain by
all electrodes at any time to 4 mA. The stimulation electrodes (Ag/AgCl
“Pi” electrodes, Neuroelectrics Barcelona, Barcelona, Spain) have a radius
of 1 cm and provide, through a gel interface, a contact area of π cm2. The
electrodes can be placed on a cap using an extension of the 10–20 system
providing 27 default locations.1

Realistic head model and electric field modeling

The electric field calculations were performed using the realistic head
model described inMiranda et al. (2013). Briefly, tissue boundaries were
derived fromMR images (scalp, skull, cerebrospinal fluid (CSF) including
ventricles, graymatter andwhitematter) and the Finite ElementMethod
subject to the appropriate boundary conditions was used to calculate the
electric potential in the head. Tissues were assumed to be uniform and
isotropic and values for their electric conductivity were taken from the
literature.

In order to compute electric fields rapidly with our software, we have
made use of the principle of superposition. This states thatwith appropri-
ate boundary conditions, the solution to a general N-electrode problem
can be expressed as a linear combination of N − 1 bipolar ones. A fixed
reference electrode is first chosen, and then all the bipolar solutions
using this electrode are computed. A general solution with an arbitrary

Fig. 1.Montages for unilateral stroke treatment over the left motor cortex. Note the more centralized, “quasi-monopolar” nature of the electric field impact area provided by the 8-electrode
solution. First row: targetmap. Second and third rows: normal electric fieldmaps for a traditional (bipolar) 1 mAmontage vs. the 8-electrode optimized solution (1 mAmax, 4 mA total max)
respectively. Fourth and fifth rows: relative error (ERNI) maps (Err(x) in Eq. (1)) for traditional and 8-electrode solutions respectively. Negative values (blue) indicate a better fit than no in-
tervention, positive values (red) a worse fit than no intervention.

1 The list of available positions in the standard StarStim cap are (in the EEG 10–10 sys-
tem): F7, AF7, Fp1, Fpz, Fp2, AF8, F8, F3, Fz, F4, T7, C3, C1, Cz, C2, C4, T8, P7, P3, Pz, P4, P8,
PO7, O1, Oz, O2 and PO8.
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number of N electrodes can then easily be computed as follows.
The currents to be set can be described by an N-ary array of
the form [I1,…, IN], with the current conservation constraint
IN = −∑n = 1

N − 1In. Let En be the electric field solution for a bipolar
montage with currents [0,… +1,…, − 1] (in some chosen units,
with the “+1” in the nth position). For the general multi-electrode
case, the electric field due to currents [I1,…,IN] is simply given by
E =I1E1 + … + IN − 1EN − 1.

In our case, 27 “Pi” electrodes were placed on the scalp at the
positions available in the standard StarStim cap. The electrodes were
represented by cylindrical gel disks with a diameter of 1.0 cm and a
height of approximately 2.5 mm. Twenty six different calculations
were performed, with the anode always at Cz and the cathode at one
of the other 26 positions in the cap, and with the current set to 1 mA.
The electric field for each one of these bipolar montages was obtained
as minus the gradient of the electric potential. The total electric field
for a given combination of bipolar montages can then be computed as
the weighted vector sum of the electric field due to each montage. A

comparison of such superimposed solutions with the direct calculation
showed that the errors involved were completely negligible (b10−
8 V/m). The electric field distributions associated to traditional elec-
trode montages with two 25 cm2 circular sponge electrodes were also
computed in order to compare their performance to the optimized
solutions.

In the convention used below, a positive value for the component of
the electric field normal to the cortical surface E⊥means that the electric
field component normal is pointing into the cortex. Aswe discuss below,
such a field would be excitatory. On the other hand, an electric field
pointing out of the cortex (negative normal component) would be
inhibitory.

Optimization problem and algorithms

The basic mechanism for neuronal interaction in tCS is presently
thought to arise from the coupling of electricfields to populations of elon-
gated neurons such as pyramidal cells (Bikson et al., 2004; Molaee-

Fig. 2.Montages for bilateral stroke treatment. Note the more centralized nature of the electric field impact area with the multi-electrode solution. First row: target map over the motor
cortex on both hemispheres. Second and third rows: normal electric field maps for a traditional (bipolar) 1 mA montage vs. the 8-electrode optimized solution (1 mA max, 4 mA total
max) respectively. Fourth and fifth rows: relative error (ERNI) maps (Err(x) in Eq. (1)) for traditional and 8-electrode solutions respectively. Negative values (blue) indicate a better fit
than no intervention, positive values (red) a worse fit than no intervention.
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Ardekani et al., 2013; Radman et al., 2009; Rahman et al., 2013; Roth,
1994; Ruffini et al., 2013 and references therein). Non-coincidentally,
such populations are also recognized to be the main generators of EEG
signals, in a process of spatially coherent oscillation at certain frequencies
(see, e.g., Merlet et al. (2013) and references within). The role of other
types of neurons (e.g., interneurons such as basket cells) or other brain
cells such as glia is not well understood, since their distribution and con-
nections are complex, but they are in principle less sensitive to such fields
due to their more isotropic structures and distributions. Nevertheless, ac-
cording to this model, a necessary first step in modeling the effects of tCS
is to determine the spatial distribution of the generated electric fields in
the brain.

At the single neuron level, the external electric field vector forces the
displacement of intracellular ions (which mobilize to cancel the intra-
cellular field), altering the neuronal ionic distribution and modifying
the transmembrane potential difference. For an ideal straight finite
fiber with space constant λ and length L NN λ in a locally homogeneous
electric field E

!
, the transmembrane potential difference is largest at the

fiber termination, with a value that can be approximated by λ E
!

! n̂,
where n̂ is the unit vector parallel to the ideal main fiber axis (see
Rahman et al. (2013), Ranck (1975), Ruffini et al. (2013) and references
therein). This is essentially a first-order Taylor approximation in the
electric field, with a spatial scale provided by the membrane space con-
stantλ, and geometric directions byfield and fiber orientation. For short
neurons of length L b λ, the spatial scale factor tends to L. Thus, longer
neurons with a higher membrane space constant will undergo a larger
change in membrane potential.

Ideally, in order to set up a montage optimization problem it would
be necessary to fully define the target vectorial electric field values in
the cortex (or other areas) based on neurobiophysical principles. With
such a specification an optimization problem could easily be defined.
However, given our limited understanding of brain function this does
not seempossible today. As proxies, desired target values for themagni-
tude or some of the components of the electric field can be specified.
Working with magnitudes is a priori problematic, because the magni-
tude of the electric field vector or any of its components is invariant
under overall current reversal, and there is abundant evidence showing
that current direction is an important parameter in tDCS. Indeed, pyra-
midal neuron populations in the cortical outer layer display a preferred
alignment direction normal to the cortical surface. For this reason, they
offer a clear target and preferred direction for tCS stimulation. While
other electric field components may no doubt be important (Rahman
et al., 2013), it does not seem presently possible to determine how to
specify these components in any polarity sensitive optimization strate-
gy, given the apparent isotropy of connections in directions other than
the normal. For these reasons, andwithout loss of generality, we choose
to focus here on the optimization of the component of the electric field
normal to the cortical surfaces.

With the fast electric field calculation algorithm in place, the optimi-
zation problem is essentially defined by i) a target map on the cortical
surface, ii) a weight map providing the degree of relative importance
of each location in the target map and, iii) a set of constraints on the
number of electrodes and their currents, as described in Targeting
localized cortical regions section.

The target and target weight maps
The target map can be a user-defined area or areas in the cortical

surface. Target maps can be defined ad-hoc by the user, or they can
stem from, e.g., fMRI, PET, MEG or EEG data, as described in General
statement of the problem section. In the latter case techniques such as
bandpass filtering and cortical mapping (a simpler version of EEG to-
mography where the generating dipoles are constrained to the cortical
surface) could be used to generate target maps (see the discussion
below). Indeed, EEG connectivity analysis can be carried out at the
voxel or node level as opposed to electrode space (see, e.g., Ray et al.
(2007)).

The use of rs-fcMRI seed t-testmaps (called here “t-maps”) is partic-
ularly appealing, as it can provide links to deep regions not easily acces-
sible by non-invasive stimulation techniques. However, seed maps can
also be used to target cortical networks. Such applications may be of
interest for pathologies such as stroke or epilepsy, with seeds defined
by cortical lesions. In this way, stimulation may not only directly target
the affected region, but also the entire cortex exploiting brain
connectivity.

The algorithm described here requires the provision of a ternary
choice. A given area may be stimulated for excitatory, inhibitory or
neutral effects. Such choices basically define the targeted electric field
normal component at each region. An electric field target value E0⊥(x)
can be defined by the user. Here we will work with a value based on
the tCS literature (Miranda et al., 2013), where currents of the order
of 1–2 mAare used. For example, E0⊥ = +0.3 V/m is a reasonable target
for excitation (recall that electric field direction is defined here to be
positive if directed normal and inwards at the cortical surface),
E0⊥ = −0.3 V/m for inhibition, and E0⊥ = 0 V/m for a neutral effect.
Theweights assigned to each location typically vary from 0 to 100, bias-
ing the solutions towards some specific target areas.

Current intensity optimization
Assuming that a set of electrode locations has been specified, we de-

scribe here the process of current intensity optimization given target
and weight maps. The generic system of equations to solve for a hypo-
thetical N-electrode system is2 [E1(x)… EN − 1(x)] ⋅ I = E0(x), where
En(x) is a basis function solution for a particular bipolar combination
(specifying the normal component of the E field at each point x in the
mesh), I is the array of sought-for currents, and E0(x) is the target
value related to the t-map. We note that in our current implementation
there are about 75,000 points in the outer cortical mesh (GM outer
surface) and 88,000 in the WM surface (WM–GM interface).

In the case of a statistical t-map T(x) from, e.g., rs-fcMRI,moreover,we
request that the equation associated to eachmesh point x beweighted by
aweightW(x). If the t-mapmagnitude is large at a given cortical location,
we ask that the corresponding equation be enforced strongly, since the
location under scrutiny is proportionally statistically significant. This
can be implemented by multiplying each row in the target equation
above byW(x) = |T(x)|. In addition, if the target map at a given location
is not statistically significant (e.g., |T| b 2) we may want our solution to
have no effect on it, that is, the target electric field for a given lower
threshold Tmin should be set to 0. A minimum weight Wmin should be
set for such cases (e.g.,W(x) = Wmin = 2).

The problem of optimization of currents for a given montage is for-
malized using constrained, weighted least squares. Mathematically,
the goal is to minimize the Error Relative to No Intervention (ERNI)
Δ(I) = ∑xErr(x;I), where we define the local relative error at each
mesh point x by (V/m)

Err x; Ið Þ ¼ Yw xð Þ−Ew xð ÞIð Þ2− Yw xð Þð Þ2

1=Nxð Þ
X

x
W xð Þ2:

ð1Þ

Here, I is the array of electrode currents, Nx is the number of mesh
points and Yw(x) = E0T(x) if |T(x)| N Tmin, else Yw(x) = 0, and
Ew(x) = E(x)W(x). Optimization is subject to the constraints |In| b Imax

for n = 1,…, N (with IN = −∑n = 1
N − 1In), where Imax is the maximal

allowed current at any electrode, and ∑In N0In ¼ 1=2ð Þ∑N jIN jbITmax ,
where Imax

T is the maximal allowed total injected current into the
brain.

The quantities Err(x;I) and Δ(I) as defined provide measures of how
close the solution is to the target (at a mesh point or on the average, re-
spectively). Note that the definition is relative to a zero-current solution
(no stimulation applied), i.e., Δ(I) = 0 means stimulation is off (I = 0,

2 For simplicity we drop the ⊥ symbol used to indicate the normal component.
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no intervention), Δ(I) b 0 (Δ(I) N 0) means the solution has lower
(higher) error than no intervention.

Genetic algorithm
Since in generalwewill wish to limit the number of electrodes used, a

search in the space of electrode locations (montages) needs to be carried
out. Genetic algorithms (GAs) are oftenused to solve suchdirected search
problems and are especially interesting for this problem, since both
mutation and cross-over of solutions can be definedmeaningfully. In ad-
dition, GAs parallelize the search in the rather large space of montages
(even for amoderately complex 27 electrode cap the number of different
montages with 8 electrodes is very large). Briefly, GAs imitate nature by
treating candidate solutions to an optimization problem as individuals
endowed with a chromosome which is subject to evolution and natural
selection (for an introduction see, e.g., Mitchell (1998)). The genetic algo-
rithm implemented here is based on the definition of a montage by a
“DNA”binary string (in this case of dimensionN − 1) specifying the elec-
trodes to be used. The fitness of a given montage is evaluated by finding
the best current values for the chosen electrode locations (as described in
the previous section). Cross-over andmutation functions are defined in a
natural way to ensure that the offspring of solutions do not violate the
constraint of maximal number of electrodes in the solution, yet re-
semble the parents. Solutions with more than the maximal number
of electrodes desired are penalized strongly. The algorithm, implement-
ed in MATLAB (2009) with specifically designed fitness, cross-over and
mutation functions, converges rather quickly (in a few hours) and reli-
ably to a solution.

The overall quality of the solution I is quantified by the Error Relative
toNo InterventionΔ(I) (recall thatΔ(I = 0) = 0). Another goodness-of-
fit measure is provided by the related weighted cross correlation coeffi-
cient of target map and electric field,

cc ¼

X
x
Yw xð ÞEw xð Þ ! I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x
Yw xð Þð Þ2

X
x
Ew xð Þð Þ ! IÞ2

q
;

ð2Þ

a number between−1 and 1. In order to visually assess solution quality
as amap over the cortical surface, ERNImaps (i.e., of Err(x; I)) can be used
(as seen in the figures).

Results

In this section we provide some solutions using this technique. In
Table 1 a summary of the characteristics of each montage is provided,
including a “full-cap” 27 channel solution.We can observe that increasing
the number of electrodes beyond 8 improves the performance of the
solution only marginally for these particular targets, especially the
simpler ones (but this may be a reflection of the spatial correlation

scales of the target maps). We also note that the differences in
weighted cross-correlation coefficient between traditional and multisite
montages are quite significant given then large number of mesh points
in the calculation (about 75,000), even considering the spatial correla-
tions of target maps or electric fields.

Targeting localized cortical regions

As discussed, in a typical tDCS study two electrodes are placed on the
scalp to target a specific brain region. The effect of the chosen montage
depends on the spatial distribution of the vectorial electric field induced
in the GM andWM, and since in a bipolar montage the second electrode
will carry the sameamount of current as theprimary electrode, undesired
side effects may appear on the “return” or “reference” site. Consider for
example targeting the left motor cortex for excitation, a common ap-
proach in stroke rehabilitation (Mahmoudi et al., 2011). We choose
here the weights in the motor cortex areas to be twice as large as in the
rest of the cortex, where the field target is zero. In Fig. 1 we provide a
simulation of the electric field using a traditional montage with 25 cm2

sponges over C3 and FP2 (the contralateral supra-orbital region). We
can observe the widespread nature of the induced fields, and the
resulting high Error Relative to No Intervention as compared to the GA
optimized 8 electrode montage (see Table 1). We note that weighted
cross-correlation coefficients remain relatively loweven for the best solu-
tions, reflecting the limited freedom available to adapt to the defined
weighted target maps. Similarly, Fig. 2 illustrates a bipolar target map
used in stroke rehabilitation (e.g., Lindenberg et al. (2010) and
Mahmoudi et al. (2011)),with one excitatory target on the leftmotor cor-
tex, the other (inhibitory) on the right. Again, the multi-electrode solu-
tion provides a superior fit, with better account for neutral effect target
areas.

Cortical pattern target from PET

We provide in Fig. 3 the solution for a cortical target map based on
PET data (Mayberg et al., 2005). The target reflects cerebral blood flow
(CBF) changes in response to deep brain stimulation therapy for
treatment-resistant major depression. Accordingly, the optimization
problem is designed to excite regions where CBF has increased, and in-
hibit regions where CBF decreases, with target weights proportional to
CBF change magnitude. As can be seen in Table 1, the multifocal solution
provides a lower Δ and higher correlation coefficient (Table 1) since it is
able to “hit” the target map at several locations, while the classical mon-
tage performs rather poorly.

Cortical pattern target from rs-fcMRI

Continuing with the example of treatment-resistant major depres-
sion,we have generated an electrodemontage thatwill excite and inhibit
different areas of the cortex based on the cortical rs-fcMRI t-map pattern
of correlation with the SG, with target weights proportional to t-map
magnitude. In this case, the rs-fcMRI t-map needs to be sign reversed,
since the goal is inhibition of the associated seed. By exciting anti-
correlated areas and inhibiting correlated areas, we would hypothesize
that this stimulation will propagate to and maximally inhibit the SG, im-
proving antidepressant response. Note that on the basis of this targetmap
there is no obvious rationale for using a traditionalmontagewith anodal
stimulation over the left dorsolateral prefrontal cortex (DLPFC)—e.g.,
the rs-fcMRI target map is fairly symmetric. In Fig. 4 we provide the so-
lution to this problem using an 8 electrode montage as opposed to one
using a traditional montage, where we target the left DLPFC as depicted
by the left BA46 (F3)with a return over Fp2 (see, e.g., Palm et al. (2012)
and Fregni et al. (2006)). Again, the multi-electrode solution yields a
lower Δ and higher correlation coefficient than the classical montage
(Table 1).

Table 1
Montage comparisons for the four targetmaps discussed in the text.Weighted Correlation
Coefficient (WCC), Error Relative to No Intervention Δ(I) (V2/m2), maximal current at any
electrode and total injected current (μA) are provided for traditional (bipolar), 8 and 27
channel solutions.

Target Montage WCC Δ(I) Max I Tot Inj I

BA4 left Traditional 0.02 163 1000 1000
8 channel 0.31 −8 1000 1297
27 channel 0.31 −9 1000 2146

BA4 bilateral Traditional −0.07 184 1000 1000
8 channel 0.26 −13 823 1513
27 channel 0.26 −14 854 2045

rs-fcMRI SG seed map Traditional 0.11 1 1000 1000
8 channel 0.29 −214 1000 3262
27 channel 0.31 −239 1000 4000

PET DBS map Traditional −0.05 125 1000 1000
8 channel 0.21 −51 843 2236
27 channel 0.23 −59 1000 4000
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Discussion

We have described here a method for optimization of tDCS mon-
tages with extended targets based on realistic head modeling of the
components of the electric field as defined by cortical surfaces. The ad-
vantage of working with the electric field on the cortical surface is that
it allows for optimization of the normal component of the electric field,
or of its tangential component or magnitude. The methodology is
based on current knowledge of the primary interaction of tCS electric
fields and the cortex. The optimization problem is defined in terms of a
target map which attributes weights to the different mesh points. This
concept makes the method very flexible and allows for working with
one or a few extended uniform targets with simple or arbitrary shapes
or, more importantly, with extended targets weighted by somemeasure
of interest such as “activation” or “connectivity” obtained using various
imaging modalities, with the ability of specifying the number of elec-
trodes available for stimulation. Focality is achieved by prescribing zero
field values at the nodes outside the target for which specific weights
can also be specified. Safety in protocol optimization is addressed by

limiting the current through each electrode and the total current injected
into the brain.

Target maps can be defined from various sources. These include
fMRI, EEG—which raises the interesting possibility of closed-loop mon-
tage optimization—positron emission tomography (PET) and near-
infrared spectroscopy (NIRS) (Shafi et al., 2012). These brain imaging
methods can be leveraged to provide information both for clinical or
research applications. Magnetic resonance spectroscopy (MRS) can
provide another potential means to gather additional, relevant neu-
rochemical information that may help define whether excitatory or
inhibitory stimulation should be applied to a given node. Diffusion
tensor imaging (DTI) data could be used to refine electric fieldmodels
to take into consideration conductivity anisotropy and also for defining
vectorial (oriented) targetmaps beyond the cortical normalmodel. Fur-
thermore, methods for aggregating information from these techniques
may provide unique, yet insufficiently explored ways to further refine
cortical target maps. Future efforts in this area would be valuable.

Some limitations of the proposed approach should be mentioned
here. These include the need for restriction to a set number of fixed

Fig. 3.Montages for depression (fromPET data). First row: targetmap from PET changes in response to DBS therapy for depression. Second and third rows: normal electric fieldmaps for a
traditional (bipolar) 1 mAmontage vs. the 8-electrode optimized solution (1 mAmax, 4 mA total max) respectively. Fourth and fifth rows: relative error (ERNI) maps (Err(x) in Eq. (1))
for traditional and 8-electrode solutions respectively. Negative values (blue) indicate a better fit than no intervention, positive values (red) a worse fit than no intervention.
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positions for electrode placement, an optimization based on cortical
surface target maps, the focus on normal component of electric fields
and the reliance on a specific head model. The first limitation can be
overcome by the use of higher density caps, e.g., a 10–10 full cap (74
electrode positions) as opposed to the subset of 27 positions used
here. The second limitation is not a critical one given the rather large
scale of tCS currents compared to gray matter thickness. However, if
deeper structures are sought a volume optimization problem can be de-
fined instead. The focus on the electric field cortical normal component
is not a intrinsic limitation of the implementation described here, but
rather a choice. The algorithm described here can equally handle opti-
mization of electric field components aswell as electric fieldmagnitude.
It does remain to be seenwhich optimization problem ismost appropri-
ate, an issue to be elucidated by experimental work.

Even though the realistic simulation of electric fields in the brain is
based on solid physics, there is uncertainty on the precise conductivity
values to be used. These limitations and others (including the use
of isotropic conductivity) in our realistic head modeling are discussed in
Miranda et al. (2013). Research is on-going on the sensitivity of electric

fields to variability of conductivity variables. There is, nevertheless, a
high need to contrast these models with measurements, certainly a
topic for further work.

We note that the model used here is based on the single-subject
template Colin27. Other approaches can be envisioned, such as the use
of the MNI-152 average model (Fonov et al., 2009) or, even better, the
use of personalizedmodels based on individual scans,whichwill certainly
be necessary in specific cases (e.g., the case of damaged brains or skulls).
We also note that in the examples above we have used rs-fcMRI group
data to define cortical maps. Target maps may eventually require
individualization-e.g., individual differences in rs-fcMRI associated to de-
pression have been reported (M. Fox et al., 2012). However, while indi-
vidualization in either case may add more precision, it is presently
unclear in which cases the extra modeling effort will be warranted,
given that tCS fields are rather spatially spread. On the other hand, the
normal component of the electric field peaks mainly in the bottom of
the sulci, and themain sulci are not too variable among different subjects
even though their position in the brain can vary by a few centimeters.
Similarly, the fact that targets are generally distributed and large (the

Fig. 4.Montages for depression (from SG rs-fcMRI seed target map). First row: target map. Second and third rows: normal electric field maps for a traditional (bipolar) 1 mAmontage vs.
the 8-electrode optimized solution (1 mAmax, 4 mA totalmax) respectively. Fourth and fifth rows: relative error (ERNI) maps (Err(x) in Eq. (1)) for traditional and 8-electrode solutions
respectively. Negative values (blue) indicate a better fit than no intervention, positive values (red) a worse fit than no intervention.
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target maps usually display low spatial frequencies) also means that the
electric field is in effect “averaged over” the anatomy, making small ana-
tomical details less relevant.

Finally, we note that the basic interactionmodel used here, where the
effects of stimulation are linearly depending on the electric vector field,
may not be accurate in all situations. Non-linear effects in electric field
or dosage could play a role, e.g., the direction of the excitability change
has recently been shown to be intensity dependent (Batsikadze et al.,
2013).

Clinical research should explore this methodology in selected in-
teresting applications to test its range of validity, e.g., with pilot tests
in depression, Parkinson's disease or stroke. Comparison of effects using
traditional versus multifocal montages in healthy subjects would pro-
vide an interesting starting point for such research.

Generalization to tACS

The generalization of the proposed method to the case of tACS is
non-trivial, even though the process for calculation of electric fields
for low frequencies (b1 kHz) is essentially the same as for tDCS. That
is, if E(x) is electric field the solution to a DC current for a particular
montage and currents, then E(x,t) = E(x)cos(2πtf) is the solution to
the analogous AC case in which each current is multiplied by cos(2πtf).
The real difficulty here lies in the choice of a physiological meaningful
optimization problem.

Recent studies show that support of brain activity involves the
orchestrated oscillatory activity of different and spatially separated
brain regions (see, e.g., Buzsaki (2006) and Buzsaki and Draguhn
(2004)). Indeed, a major challenge for neuroscience today is to map
and analyze the spatio-temporal patterns of activity of the large neuronal
populations that are believed to be responsible for information process-
ing in the human brain. Phase or amplitude synchronization may relate
different functional regions operating at the same or different frequencies
via cross-frequency synchrony. In principle, tACS is potentially capable of
acting on such natural rhythms in brain networks through the process of
resonance (Antal and Paulus, 2013; Dayan et al., 2013; Fröhlich and
McCormick, 2010; Herrmann et al., 2013; Merlet et al., 2013; Paulus,
2011; Ruffini et al., 2013; Zaehle et al., 2010) and devices such as StarStim
already allow for the simultaneous multisite stimulation of different cor-
tical regions with specific frequencies and relative phases as well as the
recording of EEG data from the same electrode locations.

In order to configure properly a multisite monochromatic tACS
montage (i.e., one using a single tACS frequency), EEG or MEG data
can be used to define the target frequency as well as a target cortical
map. The latter could be obtained, e.g., using EEG tomography or cortical
mapping algorithms with EEG data filtered at the appropriate frequency
band. Closed-loop implementations where the EEG data is used to opti-
mize stimulation parameters can easily be envisioned, with applications
such as epilepsy.

In addition, rs-fcMRI data can be used to define a tACS target map
much as discussed above. Although fMRI is capable of capturing relatively
slow metabolic changes, it has been shown to correlate with local field
potentials (LFPs) in the gamma range, and anti-correlate at slow frequen-
cies (Mukamel et al., 2005). It would follow that there are two possible
scenarios. For tACS frequencies in the low frequency range (b25 Hz),
fMRI and LFP (and presumably EEG) data anti-correlate, hence tACS
would be inhibitorywith respect to the targetmap. In the high frequency
range (25–300 Hz), tACS would be expected to act in an excitatory
fashion. DC stimulation could be combined to target the complementary
effect achieved by the chosen tACS frequency. E.g., for high frequency
tACS, optimization could be defined by stimulation at the appropriate
tACS frequency at the excitatory target map sites, with DC inhibitory
stimulation at the complementary sites.

The next order of complexitywill involve stimulation at different sites
with different frequencies. From the optimization point of view it would
suffice to provide target maps for each frequency—the generalization of

the least-squares approach described below would be immediate by
the principle of superposition (this time in the frequency domain)—
with an error function generalized as a weighted sum of error functions
for each frequency component.

Going one step further, recent results using resonant “endogenous”
stimulation waveforms in vitro (which could be derived from EEG in
humans) are particularly intriguing (Fröhlich and McCormick, 2010).
While tCS technology allows for all these possibilities, research proto-
cols need to be defined on solid neurophysiological hypotheses, given
the large parameter space (which includes the number of electrodes, lo-
cations, current intensities and current waveforms).
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